01

Comparison of Desulphurization Method

Focus of dry type desulphurization

Item	Existing desulphurization method	Hybrid desulphurization method
Media	• Contains metal ions : : Fe₂O₃, Fe(OH)₃ • Activated carbon : impregnation ions	· Contains metal ions(Fe, Mg) and nutrient(N, P) → Hybrid media
Application Conditions	• O ₂ : below 0.1% • RH: 40~70% • Adsorption Capacity: 100~200g/kg	· O ₂ : 0,2% or more · RH: 95% or more · Adsorption Capacity: 600~800g/kg
Removal Mechanism	• Chemical reaction Fe2O3 + 2H2S → Fe2S3 + 3H2O 2Fe{OH}3 + 3H2S → 2FeS + S + 6H2O	· Chemical+ Biological reaction(hybrid) 2Fe(OH)3 + 3H2S → 2FeS + S + 6H2O MgO + H2S → MgS + H2O H2S + 0.5O2 → S + H2O(microorganism) H2S + 2O2 → H2SO4(microorganism)
Characteristics	Require of pre-treatment dehumidifier facility because the pores are blocked by the moisture in inflow gas, the adsorption ability decreases. When air(oxygen) is introduced, there is a risk of fire due to oxidation of adsorption products. Short media lifetime and replacement cycle. Need to prevent fire and odor complaints	No need dehumidifier facility due to the porous pallet of cellulose. Air(oxygen) within the inflow biogas is used as a source of oxygen for media regeneration and growth of microorganisms. Long media lifetime and replacement cycle by regeneration reaction. High adsorption rate of hydrogen sulfide(H2S) (more than 5 times conventional media.) Stable high loading rate.

02

Removal mechanism of hybrid desulphurization media

Process diagram of Hybrid Desulphurization System

- Characteristics | Chemical + Biological desulphurization
 - · Continuous regenerative mechanism

Example of Biogas Purification System

Characteristics of Hybrid Desulphurization System (1)

- No need dehumidifier because it is operated at 100% RH.
- · Corrosion prevention of piping after desulphurization facility and dehumidifier unit

04

Characteristics of Hybrid Desulphurization System (2)

- · Combination of chemical-biological removal and regeneration processes
- ⇒ Stable and high removal efficiency of H2S ⇒ Long lifetime of media, Reduce replacement cost

Removal rates of H2S in J STP

Characteristics of Hybrid Desulphurization System (3)

- Easy maintenance of media replacement etc.
- ⇒ No risk of fire during replacement
- ⇒ Waste media can be take out directly or store on site for long time
- ⇒ No civil complains due to odor

No heat & odor

